

Categorial differentiation as a representational manifestation of recursion

Núria Bosch University of Cambridge ☑ nb611@cam.ac.uk ④ nuria-bosch.github.io

The Recursion Workshop (TAL, Cambridge) 18 June, 2024

Introduction

- This talk is about (i) **lesser-discussed facet of recursion** and (ii) a **hypothesis** for the **acquisition of syntactic (and other) categories**.
 - (i) *Representational* and *ontological* manifestation of recursion → variously termed, differentiation, granularisation, etc.
 - (ii) Differentiation proposed to be key in *emergent complex systems* → expected to play a possibly important role in language too.

Introduction

- This talk is about (i) **lesser-discussed facet of recursion** and (ii) a **hypothesis** for the **acquisition of syntactic (and other) categories**.
 - (i) *Representational* and *ontological* manifestation of recursion → variously termed, differentiation, granularisation, etc.
 - (ii) Differentiation proposed to be key in *emergent complex systems* → expected to play a possibly important role in language too.
- ightarrow My proposed working hypothesis for acquisition
 - Categorial Acquisition by Differentiation (CAD) Syntactic categories granularise during language acquisition. Acquisition proceeds such that coarser-grained categories are acquired first, with later, finer-grained distinctions elaborating on developmentally-prior structure.

If true, this is unsurprising given what is known about biological and complex systems.

Introduction

- This talk is about (i) **lesser-discussed facet of recursion** and (ii) a **hypothesis** for the **acquisition of syntactic (and other) categories**.
 - (i) *Representational* and *ontological* manifestation of recursion → variously termed, differentiation, granularisation, etc.
 - (ii) Differentiation proposed to be key in *emergent complex systems* → expected to play a possibly important role in language too.
- ightarrow My proposed working hypothesis for acquisition
 - Categorial Acquisition by Differentiation (CAD) Syntactic categories granularise during language acquisition. Acquisition proceeds such that coarser-grained categories are acquired first, with later, finer-grained distinctions elaborating on developmentally-prior structure.

If true, this is unsurprising given what is known about biological and complex systems.

 $\rightarrow\,$ I show we observe evidence for (1) in syntactic acquisition. Two case-studies to support it. The many facets of recursion

Recursion

Definition of a problem or concept in terms of (a simpler version of) itself. E.g., Fibonnaci sequence $F_n = F_{n-1} + F_{n-2}$ for n > 1 (Causey, 2006)

- ! Construed this way, recursion is a function that could apply in many contexts.
 - Most commonly adduced *computational/derivational* manifestation of recursive functions in language: self-embedding, Merge (Hauser, Chomsky, and Fitch, 2002).
 - $\hookrightarrow \ \text{Merge}(A, B) \rightarrow \{A, B\}, \text{Merge} \ (\{A, B\}, C) \rightarrow \{\!\{A, B\}, C\}...$

Recursion

Definition of a problem or concept in terms of (a simpler version of) itself. E.g., Fibonnaci sequence $F_n = F_{n-1} + F_{n-2}$ for n > 1 (Causey, 2006)

- ! Construed this way, recursion is a function that could apply in many contexts.
 - Most commonly adduced *computational/derivational* manifestation of recursive functions in language: self-embedding, Merge (Hauser, Chomsky, and Fitch, 2002).

 $\hookrightarrow \ \text{Merge}(A, B) \rightarrow \{A, B\}, \text{Merge} \ (\{A, B\}, C) \rightarrow \{\!\{A, B\}, C\}...$

 $\rightarrow\,$ No reason to think the above is the only manifestation we should be caring about.

• My focus here: another perspective on recursion in language, its proposed importance in *representation* and *development*.

• My focus here: another perspective on recursion in language, its proposed importance in *representation* and *development*.

Differentiation

Successive division or 'splitting' during development from a single, undifferentiated category or unit to progressively finer-grained/specialised categories/units.

• Recursive function that can apply over representations during development. Split(A) \rightarrow {A, B}, Split ({A, B}) \rightarrow {{A, {A₁, A₂}}, {B, {B₁, B₂}}}

- 1. The many facets of recursion
- 2. Differentiation in emergent systems
- 3. Differentiation, abstractly
- 4. Two case-studies
- 4.1 Acquiring cartography
- 4.2 Acquiring topics crosslinguistically
- 5. Implications and outlook

- Several indications that differentiation plays a key role in various cognitive and biological domains.
- → Embryogenesis: differentiation of cells to a new cell type throughout development, from more general to more specific

(R. Gordon and N. K. Gordon, 2019).

Figure 1: Cell lineage tree

Figure 2: Cellular differentiation

- \rightarrow Visual perception:
 - Global precedence effect (Han and Chen, 1996; Chen, Zhang, and Srinivasan, 2003; Chen, 1982): global level in object perception recognised before local level, local disregarded for global information.
- \hookrightarrow Basis for coarse-to-fine (CtF) processing work (see Musel et al., 2014, for a review).
- Global processing may predominate in infants as young as 3 months (Ghim and Eimas, 1988; Bhatt, Rovee-Collier, and Shyi, 1994; Freedland and Dannemiller, 1996), and is possibly absent outside humans (Aust and Braunöder, 2015).

Figure 3: Human cognition: from coarser granularity levels to finer levels (Wang, 2017, p. 348)

- \rightarrow Visual perception:
 - Recognition-by-components (Biederman, 1987) and Structural Information Theory (Leeuwenberg and Helm, 2013): whole object is the *primary* 'code', object components are derived from this code via detecting regularities (Biberauer and Bosch, 2021).

- \rightarrow **Categorisation**: categorisation is hierarchical.
 - Basic and superordinate level categories acquired *before* subordinate ones (Horton and Markman, 1980; J. M. Mandler and Bauer, 1988; Mervis and Crisafi, 1982).
 - Participants spontaneously categorise and abruptly converge on correct hierarchical categories (Frank et al., 2023).

FIGURE 2 Categorization rules for superordinate and subordinate levels of the two hierarchies with sample stimuli. Note that the same stimulus set was used for both hierarchies, but the categorization of the stimuli changed with the rules of the hierarchy.

- $\rightarrow~$ Categorisation: categorisation is hierarchical.
 - 'Weak central coherence' in autism \rightarrow cognitive granularity as an informative characterisation of representation and neurological differences in autistic individuals ('too fine-grained') (Frith, 1989; Happé, 1999; Casanova et al., 2006; Kozima, 2013).

Science Foundation, 2015).

(See also Rutar, Wolff, et al., 2022; Rutar, Wiese, and Kwisthout, 2022; Rutar, Colizoli, et al., 2023;
 Ward et al., 2023, for other very relevant work on Bayesian structure learning).

Núria Bosch | nb611@cam.ac.uk

- \rightarrow **Categorisation**: categorisation is hierarchical.
 - 'Weak central coherence' in autism → cognitive granularity as an informative characterisation of representation and neurological differences in autistic individuals ('too fine-grained') (Frith, 1989; Happé, 1999; Casanova et al., 2006; Kozima, 2013).

- If cognition granular, decision-making processes can 'latch on' to the most appropriate levels of granularity/analysis, esp. under certainty.
- $\rightarrow\,$ Decision making and information processing:
 - **Granulation** an operation to construct or decompose already-existing granules (Zadeh, 1997).
 - Lorkowski and Kreinovich (2015) on optimisation under granularity:
 - Decision making *superficially* irrational (see, i.a., so-called satisficing, heuristics-and-biases, bounded rationality literature).
 - Can be explained: processing operates not with exact values of different quantities, *but more general granules (partial information)* that contain these values.
 - M. Mandler (2020) **coarser is better**: efficiency enhanced by letting coarse criteria—criteria with fewer categories—replace fine criteria.

- Overall:
 - Embryogenesis
 - Visual perception
 - Categorisation
 - Decision-making and information processing

- Overall:
 - Embryogenesis
 - Visual perception
 - Categorisation
 - · Decision-making and information processing
- \rightarrow ALL: From *coarse* to *fine*.
 - Converge on the observation that cognition/biology organised 'granularly' and through differentiation, a *type of recursion*.
 - Decision making and information processing appear to harness the granular levels at its disposal to optimise resources.

- Overall:
 - Embryogenesis
 - Visual perception
 - Categorisation
 - · Decision-making and information processing
- \rightarrow ALL: From *coarse* to *fine*.
 - Converge on the observation that cognition/biology organised 'granularly' and through differentiation, a *type of recursion*.
 - Decision making and information processing appear to harness the granular levels at its disposal to optimise resources.
- → Hierarchical categorisation central in human cognition and development.

• Differentiation/granularity 'elevated' in importance in theories of emergent systems.

- Differentiation/granularity 'elevated' in importance in theories of emergent systems.
- (Memory) Evolutive Systems (Ehresmann and Vanbremeersch, 2007; Ehresmann and Vanbremeersch, 2019): category-theoretic and systems-theoretic of why complex systems are granular.
 - Which systems? Many! Biological (e.g., cellular), cognitive, economical, sociological...
 - Complex Adaptive Systems are:
 - (i) Emergent, self-organising.
 - (ii) Structurally homologous or 'multiplex'.
 - (iii) Granularise through complexification processes (functor f from $\mathcal{C}_1 \to \mathcal{C}_2$).

Figure 4: Transition from two hierarchical Categories in a Hierarchical Evolutive system

- Douglas (2024) \rightarrow emergent (linguistic) categories arise through *differentiation*.
- *Differentiation tree*, with its *differentiation code*, encoding its developmental sequence. **Coarse** to **fine**.

- Douglas (2024) \rightarrow emergent (linguistic) categories arise through *differentiation*.
- *Differentiation tree*, with its *differentiation code*, encoding its developmental sequence. **Coarse** to **fine**.

→ These works, among others, give us a language-general framework with which to understand linguistic data (Bosch, 2023)

Two case-studies

• Recall:

(2) Categorial Acquisition by Differentiation (CAD)

Syntactic categories *granularise* during language acquisition. Acquisition proceeds such that coarser-grained categories are acquired first, with later, finer-grained distinctions elaborating on developmentally-prior structure.

- Recall:
- (2) Categorial Acquisition by Differentiation (CAD)

Syntactic categories *granularise* during language acquisition. Acquisition proceeds such that coarser-grained categories are acquired first, with later, finer-grained distinctions elaborating on developmentally-prior structure.

Strong hypothesis: expands on existing work arguing for granularity-aware linguistic analyses (i.a., Dresher, 2009; Jaspers, 2012; Biberauer and Roberts, 2015; Song, 2019; Cournane and Klævik-Pettersen, 2023), but takes it one step further, arguing this reflects language acquisition (following Biberauer and Roberts, 2015).

- Recall:
- (2) Categorial Acquisition by Differentiation (CAD)

Syntactic categories *granularise* during language acquisition. Acquisition proceeds such that coarser-grained categories are acquired first, with later, finer-grained distinctions elaborating on developmentally-prior structure.

- Strong hypothesis: expands on existing work arguing for granularity-aware linguistic analyses (i.a., Dresher, 2009; Jaspers, 2012; Biberauer and Roberts, 2015; Song, 2019; Cournane and Klævik-Pettersen, 2023), but takes it one step further, arguing this reflects language acquisition (following Biberauer and Roberts, 2015).
- If true, we expect:
 - Coarser-grained categorial distinctions acquired *earlier* than finer-grained ones.
- Brief evidence now from:
 - · Acquisition of functional sequencies (esp. cartography).
 - Crosslinguistic acquisition of topicalisation strategies (requiring more/less featural and categorial distinctions).

Differentiation as an acquisitional hypothesis: two case-studies

 Granularity/differentiation in *formal feature postulation*: emergent categorial and parametric hierarchies in Biberauer and Roberts (2015).

Differentiation as an acquisitional hypothesis: two case-studies

• Granularity/differentiation in *formal feature postulation*: emergent categorial and parametric hierarchies in Biberauer and Roberts (2015).

- Granularity as an object of study, not a theoretical prior.
- How can child data inform us about the granularity children may be operating with at different stages?

- Granularity as an object of study, not a theoretical prior.
- How can child data inform us about the granularity children may be operating with at different stages?
- **Case-study 1** (Bosch, 2023): emergence of **CP-structures** *vs* structures indicating command of a further articulated, **cartographic**-type CP (**'Split CP'** structures). **10 monolinguals, 5 languages**.

CP diagnostics:

- 1. Wh-questions
- 2. Yes/no questions (Germanic only)
- 3. V-to-C movement (Germanic only)
- 4. Topics/Foci
- Illocutionary (main clause) complementisers (Romance only)
- 6. Finite embedding

• Split CP diagnostics (Romance):

- $1. \ Top > Wh$
- 2. Top > Top/Foc
- 3. Complementiser > Wh/Top
- Quotative *que* 'that' > Wh (Ibero-Romance only)
- Topic > interrogative que 'that' (Catalan only)
- Sí que/sì che 'yes that' and que sí que 'that yes that' structures (for the latter, Ibero-Romance only)

• Results: CP-structures early, Split CP structures systematically late.

	CP-structures	Split CP-structures
Laura	1;10.22	3;03.21
	1.15 MLUw	2.54 MLUw
Gisela	2;04.25	2;08.00
	1.58 MLUw	2.61 MLUw
Martina	1;08.02	2;04.13
	1.57 MLUw	2.69 MLUw
Rosa	1;07.13	2;10.14
	1.27 MLUw	2.5 MLUw
Irene	1;04.16	1;11.13
	1.32 MLUw	2.95 MLUw
Koki	1;07.20	2;04.18
	1.96 MLUw	2.69 MLUw
Kerstin	1;10.03	2;09.11
	1.28 MLUw	2.32 MLUw
Simone	1;09.11	2;06.23
	1.54 MLUw	2.78 MLUw
Josse	2;00.07	2;11.09
	1.2 MLUw	3.57 MLUw
Sarah	1;10.05	3;00.19
	1.09 MLUw	3.52 MLUw

Table 1: Emergence of CP- vs Split CP-structures

Age	MLUw	S-Neg-V	S-Adv-V	S-CI-V	Aux	Wh-Q	Top/Foc	Illoc	Embed	Split CP
1,07.20	1.03									
1)09.07	1.09									
1;10.22	1.15							~		
1;11.12	1.15							~		
2;02.05	1.35							1		
2;02.13	1.3					~				
2;0.4.11	1-4-4				~	~				
2;05.08	1.64									
2;06.25	1.76				~	~				
2;07.20	1.78	1		~	~	~		~		
2;08.30	1.88			~	~	~	~	~		
2;11.17	1.98	1	~		~	~	~	~		
3200.02	2.42	1		~	~	~	~	~	~	
3203.21	3-47	1		~	~	~	~	~	~	~
3205-13	2.54	1		~	~	~	~	~	~	~
3:10.00	2.97	1		~	~	~	~	~	~	~
3;10.01	2.95	1		~	~	1	1	~	1	1
3;11.12	3.0	1		1	1	1	1	1	1	1
4:00.10	3.18	1	1		1	1	1	1	1	1

Table 2: Production of structures by Laura (Catalan)

Age	MLUw	S-Neg-V	S-Adv-V	Aux	Vz	Wh-Q	Y/N-Q	Top/Foc	Embed	Split CP
1;05.15	1.12									
1;07.21	1.17					Wh-less				
1;08.28	1.07									
1;09.10	1.17					Wh-less				
1;10.05	1.09				~					
130.13	1.17				~					
1;11.01	1.25				~					
131.15	1.37				~	Wh-less				
2;00.17	1.68	1			~		~	~		
2,05.50	1.88		1	~	~		~	~		
2;02.18	2.11	1	~		~	~	~			
2;03,16	2.05		1	~	~	~	~			
2;04.02	2.53	1	~	~	~	~	~	~		
2;04.09	2.34			1	1	1	1			
2;04.27	2.46	1	1	1	1	1	1	1		
2,05.09	2.47	1	1	1	1	1	1	1		
2;05.22	2.59		1	1	1	1	1	1		
2;06.04	2.74		1	1	1	1	1	1		
2;06.11	2.45	1	~	~	~		~	~		
2;06.18	z.8		~	~	~	Wh-less	~	~		
2,07.16	2.51	1	~	~	~	~	~	~		
2;08.05	z.66		~	~	~	~	~	~		
2;08.19	2.97	1	~	~	~	~	~	~		
2;09.02	2.59	1	~	~	~	~	~	~		
2;09.07	3.45	1	~	~	~	~	~	~		
2;10.18	z.88	1	~	~	~	~	~	~		
2;11.03	z.87	1	~	~	~	~	~	~		
2;31.27	3.64	~	~	~	~	~	~	~		
2:00.13	3.52	1	~	~	~	~	~	~	~	~
3;01.17	3.06		~	~	~	~	~	~	~	~
3:02.13	3.82	~	~	~		~	~	~	~	~
3:03:21	3.05	~	~		~	~	~	~	~	~
3:04-13	3.45	-	~	~	~	~	~	~	~	~
3105-30	z.89	-	~	~	~	~	~	~	~	1
3:07-25	3.24	· · ·	· ·		1			· ·		
\$10.07	3.71	1	1	1	1	1	1	1	1	1
3:11.04	4.07			1	1					1
4,00.11	3.81			1	1					1
4,00.30	4.08			1	1					
4:01.11	4.66			1	1					
4303.04	5-37			1	1					1
4;04.28	4-28			1	1					
4:05-29	4-7			1	1					1
4:06.12	5.00			1	1					
4:07.25	4.62	1	1	1	1		1			1
4;08.03	5.03			1	1					1
4:09.13	0.07			1	1					
4:09.29	5.2			1	1					
4:0.15	4.01			1	1					
5:02.13	4.92				~	-		-	~	~

 Table 3: Production of structures by Sarah

 (Dutch)

• Results: CP-structures early, Split CP structures systematically late.

	V2	Wh-Q	Y/N-Q	Top/Foc	Illoc	Embed	Length
Laura		15		4	42	4	1;10.22-3;03.21
							(MLUw 1.15-2.54)
Gisela		1		0	6	0	2;04.25-2;08.00
							(MLUw 1.58-2.61)
Martina		21		4	7	8	1;08.02-2;04.13
							(MLUw 1.57-2.69)
Rosa		133		12	3	8	1;07.13-2;10.14
							(MLUw 1.27-2.5)
Irene		18		3	10	4	1;04.16-1;11.13
							(MLUw 1.32-2.95)
Koki		32		7	2	4	1;07.20-2;04.18
							(MLUw 1.96-2.69)
Kerstin	1	16	21	27		1	1;10.03-2;09.11
							(MLUw 1.28-2.32)
Simone	1	166	3	105		24	1;10.03-2;06.23
							(MLUw 1.54-2.78)
Josse	1	62	37	68		1	2;00.07-2;11.09
							(MLUw 1.2-3.57)
Sarah	1	124	104	116		0	1;10.05-3;00.19
							(MLUw 1.09-3.52)

Table 4: CP-structures produced at Stages 1 + 2 and its length

• Results: CP-structures early, Split CP structures systematically late.

	Before MLUw \sim 2.5	After MLUw \sim 2.5	%
Laura	1	20	4.8-95.2%
Gisela	0	9	0-100%
Martina	0	5	0-100%
Rosa	1	31	3.1-96.9%
Irene	0	85	0-100%
Koki	0	41	0-100 %
Kerstin	3	4	42.9-57.1%
Simone	2	7	22.2-77.8%
Josse	1	19	5-95%
Sarah	2	51	3.8-96.2%
Total	10	272	3.5-96.5%

Table 5: Production of Split CP-structures before and after MLUw ~ 2.5

• Results: CP-structures early, Split CP structures systematically late.

- $\rightarrow\,$ Production data tells us that children harness cartographic-type knowledge significantly late and abruptly.
- $\rightarrow\,$ My preliminary interpretation: cartography is 'learned', not innate.

Generalisation 3: Cartography is Emergent

Evidence for cartographic-type structure within CP systematically and abruptly emerges at a later developmental stage, elaborating on developmentally-prior structure (a 'basic' CP).

- **Case-study 2**: crosslinguistic acquisiton of topics of varied parametric complexity.
- → Topics often assumed to mature *universally* 'late' (i.a., Radford, 1990; Rizzi, 1993; Friedmann, Belletti, and Rizzi, 2021; Meira and Grolla, 2023).

- **Case-study 2**: crosslinguistic acquisiton of topics of varied parametric complexity.
- → Topics often assumed to mature *universally* 'late' (i.a., Radford, 1990; Rizzi, 1993; Friedmann, Belletti, and Rizzi, 2021; Meira and Grolla, 2023).
 - ! However, investigating the granularity and complexity of late topics reported for various L1s tells us this *isn't a universal*.

- Corpus study on Germanic-Romance bilinguals → 'late' topics not a universal, L1-dependent pathways. Germanic topics have a clear advantage.
- → Also borne out with monolingual data from a range of typologically diverse languages.

	V2	Wh-Q	Y/N-Q	Top/Foc	CLLD	Illoc	Embed
Heleen							
Italian		1;09.28		2;05.00	2;07.08	2;11.03	2;05.00
Heleen							
Dutch	1;09.11	1;09.11	1;09.11	1;11.00			2;02.18
Simon				a. a 9 a (
Spanish		2;05.24		2:08.00	3;03.12	2;05.24	3;00.10
Simon							
German	2;02.11	2;03.11	2;03.25	2;03.11			3;01.03

Table 6: Emergence of all CP-structures for both children

Figure 5: Development of CP-structures in Heleen's Italian

Differentiation as an acquisitional hypothesis: topics crosslinguistically

- Why? I propose topics that require *parametrically* finer-grained distinctions acquired later → *non-operator* topics specifically are late.
- (4) Parametric complexity in topicalisation structures

Differentiation as an acquisitional hypothesis: topics crosslinguistically

• Why? I propose topics that require *parametrically* finer-grained distinctions acquired later → **borne out crosslinguistically**.

Table 7: Topicalisation strategies, their acquisition and their formal complexity

Language	Acquisition	Formal characteristics of topicali-	Parametric complexity	
		sation		
French	Very early	Adjoined or base-generated	Macroparameter	
Germanic V2	Very early	Generalised V2 diacritic	Mesoparameter	
Mandarin		On another management or		
Japanese	(Possibly) early	Operator movement or	Mesoparameter	
Korean		base-generation		
European Portuguese	Early	Operator movement (non-CLLD only)	Mesoparameter	
Spanish				
Italian	Late	Non-operator movement with CLLD	Microparameter	
Catalan				
Greek	Late	Non-operator movement with CLLD	Microparameter	
Hebrew	Lata	Non-operator movement without	Mismonomoton	
Brazilian Portuguese	Late	CLLD	Microparameter	

Differentiation as an acquisitional hypothesis: topics crosslinguistically

• Why? I propose topics that require *parametrically* finer-grained distinctions acquired later → **borne out crosslinguistically**.

Table 7: Topicalisation strategies, their acquisition and their formal complexity

Language	Acquisition	Formal characteristics of topicali-	Parametric complexity	
		sation		
French	Very early	Adjoined or base-generated	Macroparameter	
Germanic V2	Very early	Generalised V2 diacritic	Mesoparameter	
Mandarin		On another management or		
Japanese	(Possibly) early	Operator movement or	Mesoparameter	
Korean		base-generation		
European Portuguese	Early	Operator movement (non-CLLD only)	Mesoparameter	
Spanish				
Italian	Late	Non-operator movement with CLLD	Microparameter	
Catalan				
Greek	Late	Non-operator movement with CLLD	Microparameter	
Hebrew	Lata	Non-operator movement without	Missionanton	
Brazilian Portuguese	Late	CLLD	meroparameter	

$\rightarrow\,$ Acquisition timings follow from the parametric complexity ('granularity') of each topicalisation strategy

Implications and outlook

• Underdiscussed manifestation of recursion: Differentiation/granularity central in emergent complex systems (biology, cognition, etc.).

- Underdiscussed manifestation of recursion: Differentiation/granularity central in emergent complex systems (biology, cognition, etc.).
- $\rightarrow\,$ I have outlined a strong working hypothesis (CAD), and endorsed its productivity with two syntactic case-studies:
 - **Case-study 1**: granularity-aware data analysis tells us cartographic structure may be late-acquired.
 - **Case-study 2**: granularity-aware data analysis makes a fresh cut among data on the acquisition of topics crosslinguistically.

- Underdiscussed manifestation of recursion: Differentiation/granularity central in emergent complex systems (biology, cognition, etc.).
- $\rightarrow\,$ I have outlined a strong working hypothesis (CAD), and endorsed its productivity with two syntactic case-studies:
 - **Case-study 1**: granularity-aware data analysis tells us cartographic structure may be late-acquired.
 - **Case-study 2**: granularity-aware data analysis makes a fresh cut among data on the acquisition of topics crosslinguistically.
- \hookrightarrow Why **granular thinking** is insightful:
 - · Novel ways of approaching/conceptualising developmental data.
 - Unified treatment of hierarchical complexity in emergent systems.
 - Significant ramifications for linguistic categorisation and its ontological bases.
 - · Implications for diachrony and computational work, i.a.
 - New perspective on 'recursive' functions in human language.

Thank you!

Acknowledgements: Special thanks to Theresa Biberauer and Bert Vaux for supervising, as well as the Open-Oxford-Cambridge AHRC DTP (UKRI) and St John's for supporting this work.

Slides 🖵 -

Aust, Ulrike and Elisabeth Braunöder (2015). "Transfer Between Local and Global Processing Levels by Pigeons (Columba livia) and Humans (Homo sapiens) in Exemplar- and Rule-Based Categorization Tasks". In: Journal of Comparative Psychology 129.1, pp. 1–16. DOI: 10.1037/a0037691. Bhatt, Ramesh S., Carolyn Rovee-Collier, and Gary C.-W. Shyi (1994). "Global and Local Processing of Incidental Information and Memory Retrieval at 6 Months". In: Journal of Experimental Child Psychology 57.2, pp. 141–162. Biberauer, Theresa and Núria Bosch (2021). "The case for Maximise Minimal Means: linguistic and general-cognitive perspectives". Talk presented at SyntaxLab (University of Cambridge), 16 November. Biberauer, Theresa and Ian Roberts (2015). "Rethinking formal hierarchies: A proposed unification". In: Cambridge Occasional Papers in Linguistics 7, pp. 1–31. Biederman, Irving (1987). "Recognition-by-Components: A Theory of Human Image Understanding". In: Psychological Review 94.2, p. 115. Bosch, Núria (2023). "Emergent Syntax and Maturation: a neo-emergentist approach to syntactic development". MPhil Thesis. University of Cambridge.

References ii

- Casanova, Manuel F. et al. (2006). "Minicolumnar abnormalities in autism". In: *Acta Neuropathologica* 112.3, pp. 287–303.
- Causey, Robert L. (2006). *Logic, Sets, and Recursion.* 2nd. Sudbury, MA: Jones and Bartlett Publishers.
- Chen, Li (1982). "Topological Structure in Visual Perception". In: Science 218.4573, pp. 699–700.
- Chen, Li, Shaowu Zhang, and Mandyam V. Srinivasan (2003). "Global Perception in Small Brains: Topological Pattern Recognition in Honey Bees". In:

Proceedings of the National Academy of Sciences 100.11, pp. 6884–6889.

Cournane, Ailís and Espen Klævik-Pettersen (Proceedings of the 22nd Diachronic Generative Syntax (DiGS) Conference 2023). **"The role of the conservative learner in the rise and fall of verb-second".** In: *Journal of Historical Syntax* 7.6-19, pp. 1–48.

Douglas, Jamie (2024). "Exploring emergence with substance-free categories, https://ling.auf.net/lingbuzz/007826". Unpublished Ms. Dresher, B Elan (2009). The Contrastive Hierarchy in Phonology. Cambridge University Press.

References iii

- Ehresmann, Andrée and Jean-Paul Vanbremeersch (2007). *Memory Evolutive Systems: Hierarchy, Emergence, Cognition (Studies in Multidisciplinarity).* Amsterdam: Elsevier.
- (2019). "MES: A Mathematical Model for the Revival of Natural Philosophy". In: Philosophies 4.1, p. 9.
- Frank, Sebastian M. et al. (2023). **"Hierarchical categorization learning is** associated with representational changes in the dorsal striatum and posterior frontal and parietal cortex". In: *Human Brain Mapping* 44.9,

pp. 3897-3912.

Freedland, Robert L. and James L. Dannemiller (1996). "Nonlinear pattern vision processes in early infancy". In: Infant Behavior and Development 19.1, pp. 21–32.
Friedmann, Naama, Adriana Belletti, and Luigi Rizzi (2021). "Growing Trees: The acquisition of the left periphery". In: Glossa: a journal of general linguistics 6.1, p. 131.

Frith, Uta (1989). Autism: Explaining the Enigma. Oxford: Blackwell Publishing.
Ghim, Hei-Rhee and Peter D. Eimas (1988). "Global and local processing by 3and 4-month-old infants". In: Perception & Psychophysics 43.2, pp. 165–171.

- Gordon, Richard and Natalie K. Gordon (2019). "The differentiation code". In: *Biosystems* 184, p. 104013.
- Han, Shihui and Li Chen (1996). "The Relationship between Global Properties and Local Properties-Global Precedence". In: Advances in Psychological Science 4.1, pp. 36–41.
- Happé, Francesca (1999). "Autism: cognitive deficit or cognitive style?" In: *Trends in Cognitive Sciences* 3.6, pp. 216–222.
- Hauser, Marc D, Noam Chomsky, and W Tecumseh Fitch (2002). "The Faculty of Language: What Is It, Who Has It, and How Did It Evolve?" In: Science 298.5598, pp. 1569–1579.
- Horton, Marjorie S. and Ellen M. Markman (1980). "Developmental Differences in the Acquisition of Basic and Superordinate Categories". In: Child Development 51.3, pp. 708–719.

Jaspers, Danny (2012). **"Logic and Colour".** In: *Logica Universalis* 6, pp. 227–248. Kozima, Hideki (2013). **"Cognitive granularity: A new perspective over**

autistic and non-autistic styles of development". In: Japanese Psychological Research 55.2, pp. 168–174. Leeuwenberg, E. and P. A. van der Helm (2013). Structural Information Theory: The Simplicity of Visual Form. Cambridge: Cambridge University Press. Lorkowski, Joe and Vladik Kreinovich (2015). "Granularity Helps Explain Seemingly Irrational Features of Human Decision Making". In: Granular Computing and Decision-Making. Studies in Big Data. Ed. by Witol Pedrycz and Shyi-Ming Chen. Vol. 10. Cham: Springer, pp. 1-31. Mandler, Jean M. and Patricia J. Bauer (1988). "The cradle of categorization: Is the basic level basic?" In: Cognitive Development 3.3, pp. 247-264. Mandler, Michael (May 2020). "Coarse, Efficient Decision-Making". In: Journal of the European Economic Association 18.6, pp. 3006–3044. Meira, Miguel and Elaine Grolla (2023). "The Underlying Structure of Interrogatives in Brazilian Portuguese: Evidence from Acquisition Data". In: Proceedings of the 47th annual Boston University Conference on Language Development. Ed. by Paris Gappmayr and Jackson Kellogg. Somerville, MA: Cascadilla Press, pp. 562-575.

- Mervis, Carolyn B. and Maria A. Crisafi (1982). "Order of acquisition of subordinate-, basic-, and superordinate-level categories". In: Child Development 53.1, pp. 258–266.
- Musel, Benoit et al. (Oct. 2014). "Coarse-to-fine Categorization of Visual Scenes in Scene-selective Cortex". In: Journal of Cognitive Neuroscience 26.10, pp. 2287–2297.
- Radford, Andrew (1990). Syntactic theory and the acquisition of English syntax: The nature of early child grammars of English. Oxford: Wiley Blackwell.
- Rizzi, Luigi (1993). **"Some notes on linguistic theory and language development: The case of root infinitives".** In: *Language Acquisition* 3.4, pp. 371–393.
- Rutar, Danaja, Olympia Colizoli, et al. (Feb. 2023). **"Differentiating between Bayesian parameter learning and structure learning based on behavioural and pupil measures".** In: *PLOS ONE* 18.2, pp. 1–20.

- Rutar, Danaja, Wanja Wiese, and Johan Kwisthout (2022). **"From representations in predictive processing to degrees of representational features".** In: *Minds and Machines* 32.3, pp. 461–484.
- Rutar, Danaja, Erwin de Wolff, et al. (2022). "Structure Learning in Predictive Processing Needs Revision". In: Computational Brain & Behavior 5.2, pp. 234–243.
 Song, Chenchen (2019). "On the Formal Flexibility of Syntactic Categories".

PhD thesis. University of Cambridge.

- Wang, Guoyin (2017). "DGCC: data-driven granular cognitive computing". In: Granular Computing 2.4, pp. 343–355.
- Ward, Emma K. et al. (2023). Beyond the Adult Mind: A Developmental Framework for Predictive Processing in Infancy. DOI:

10.31234/osf.io/wktz8.uru: osf.io/preprints/psyarxiv/wktz8. Zadeh, Lofti A. (1997). **"Toward a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic".** In: *Fuzzy Sets and Systems* 90, pp. 111–127.